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1. Introduction

The standard AdS/CFT correspondence [1] relates a four-dimensional N = 4 SU(N) su-

perconformal gauge theory to a Type IIB string theory on AdS5 × S5. The string theory

side of the duality could be studied in its low energy effective description, i.e. in terms of

Type IIB classical supergravity. The regime of validity of this approximation requires a

small curvature of the background compared to the string scale which is well known to

be incompatible to the perturbative regime of the dual gauge theory. So this strong/weak

duality is very difficult to test. However a large number of checks have been successfully

performed and the impressive amount of evidence supporting it suggests that we have a

powerful tool to understand the strongly coupled sector of a gauge theory. The correspon-

dence can be extended to more realistic theories characterized by less supersymmetries with

respect to the original formulation and even in situations with non-conformal symmetry,

to the aim of studying QCD-like theories. At the moment we are far from a quantita-

tively understanding of non-perturbative aspects of QCD.1 However it is possible to use

1It is a general expectation that the dual of pure QCD could be a strongly coupled string model.
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the correspondence to learn about the properties of field theories which were previously

only poorly understood.

We are interested in theories with less (or no) supersymmetries which preserve their

conformal feature. Starting from an N = 4 SYM, if N = 1 superconformal invariance

is required the field theory can be realized by the exactly marginal deformations of the

N = 4 SYM first classified in [2]. In [3] Lunin and Maldacena found the gravity dual of

the so called β-deformed theory. In the case of real deformation parameter β ≡ γ the new

AdS5 × S̃5 background can be obtained from the original AdS5 × S5 solution by applying

a TsT (T-duality, shift, T-duality) transformation in S5. A natural non-supersymmetric

generalization of the Lunin-Maldacena background has been obtained in [4] by performing

a series of TsT transformations on each of the three tori of S5 but with different shift

parameters γ̂i. This background is believed to be dual to a non-supersymmetric but still

conformal gauge theory obtained by a related three-parameter deformation of the N = 4

SYM. If all the γ̂i are equal, the deformation reduces to the Lunin-Maldacena one. Other

interesting generalizations can be found in [5, 6]. A considerable effort has been devoted

so far to provide tests of the AdS/CFT in its marginal deformed version and the general

idea is to follow what has been done in the original correspondence. The first check has

been obtained in [7].

The gauge/gravity duality was constructed using D3-branes, so it is clear that stable

configurations of D3-branes play an important role in this context. Inspired by the work

of Myers [8], the authors of [9] found an expanded brane configuration in the AdS5 × S5

background with exactly the same quantum numbers of a point particle: The giant graviton.

It was described as a D3-brane sitting at the center of AdS5, wrapping an S3 onto the S5

part of the geometry and traveling around an equator of the internal space. The main

feature of the giant graviton is its stability and the relation between its radius and its

angular momentum. Since the radius of the giant cannot be greater than the radius of

the space-time, there is an upper bound for the momentum of the brane, the so called

stringy exclusion principle. In [10, 11] it was shown that also stable configurations blown

up into the AdS part of the geometry exist: The dual giant gravitons. In this case,

they have a completely different behavior due to the fact that the AdS space-time is non-

compact and then there are no constraints on their size. A remarkable fact is that both

the configurations saturate a BPS bound for their energy, which turns out to be equal

to their angular momentum in units of the radius of the background. The BPS bound

follows from their embedding in a supersymmetric theory because they preserve half of the

supersymmetries involved [10, 11]. This makes (dual) giant graviton a natural object to

study in the framework of AdS/CFT correspondence. A lot is known from the field theory

side [12 – 14] and the elegant description of these states in terms of free fermions [15] has

led to a complete classification of all the half-BPS solutions of Type IIB supergravity [16].

Other results on giant gravitons can be found in [17].

In [18] giant graviton configurations were analyzed on the non-supersymmetric three-

parameter deformation of the AdS5 × S5 background. They did not find energetically

favorable solutions making the giants unstable states. On the other hand, they showed a

striking quantitative agreement between the open string sigma model and the open spin
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chain arising from the Yang-Mills theory. Moreover, as noted in the recent paper [19] it

seems strange that giant gravitons have been not found in the supersymmetric γ̂i = γ̂

Lunin-Maldacena background yet and it would be also interesting to study giants which

expand in AdS directions. In this article we try to shed light on these problems, revisiting

the construction of (dual) giant gravitons in the three-parameter deformed background.

Our results can be easily translated to the superconformal Lunin-Maldacena deformation

by setting γ̂i = γ̂.

The plan of the paper is as follows. After an introductory section on the γ̂i-deformed

background, in section 3 we propose an analysis from a point-particle point of view to

understand how (and if) the deformation manifests itself in the study of geodesics of the

deformed background. In section 4 we give an ansatz for extended brane solutions blown

up in the deformed S̃5 part of the geometry (giant gravitons) and also in the AdS5 space-

time (dual giant gravitons). We find potentially stable states in both cases and an identical

scenario to the undeformed one where (dual) giant gravitons behave as point-like gravitons.

We note that the symmetric γ̂i = γ̂ case is not special as long as the procedure seems to be

independent of the specific value of the deformation parameters. In sections 5 we prove that

our giants are effectively solutions which minimize the action. Moreover, we examine the

bosonic spectrum of small fluctuations around the classical solutions where the deformation

of the background plays a crucial role and we show that all fluctuation modes have real

frequencies. This signals that (dual) giant gravitons are stable over perturbation even in

the presence of non-vanishing γ̂i parameters. In section 6 we compare our Dirac-Born-

Infeld results with qualitative and, where possible, quantitative expectations from the dual

CFT pictures. The main focus of this section is on possible directions along which our

work can be extended. Then we summarize and conclude.

2. Generalities on the three-parameter deformation of AdS5 × S
5

The Type IIB supergravity background we will study is related by T-dualities and shift

transformations to the usual AdS5 × S5 and is the generalization of the background first

proposed in [3] to the case of three unequal γ̂i parameters [4]. The corresponding back-

ground is a non-supersymmetric deformation of AdS5 × S5 and should be dual to a non-

supersymmetric but marginal deformation of N = 4 SYM. Since the deformation is exactly

marginal, the AdS factor remains unchanged. The metric of the so called AdS5×S̃5 solution

(written in string frame and with α′ = 1) can be read from

ds2 = ds2
AdS5

+ ds2
S̃5 (2.1)

where

ds2
AdS5

= −(1 +
l2

R2
)dt2 +

dl2

1 + l2

R2

+ l2
[

dα2
1 + sin2 α1

(

dα2
2 + sin2 α2dα2

3

)]

(2.2)

is the usual AdS5 space-time and

ds2
S̃5 = R2

(

dr2

R2 − r2
+

r2

R2
dθ2 + G

3
∑

i=1

ρ2
i dϕ2

i

)

+ R2Gρ2
1ρ

2
2ρ

2
3

(

3
∑

i=1

γ̂idϕi

)2

(2.3)
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is the deformed five-sphere. Here

G−1 = 1 + γ̂2
1ρ2

2ρ
2
3 + γ̂2

2ρ2
1ρ

2
3 + γ̂2

3ρ2
1ρ

2
2 , γ̂i = R2γi (2.4)

and it is convenient to parametrize ρi coordinates via ρ2
1 = 1 − r2

R2 , ρ2
2 = r2

R2 cos2 θ , ρ2
3 =

r2

R2 sin2 θ. Note that
∑3

i=1 ρ2
i = 1 and we have 0 ≤ r ≤ R. We consider only the case of real

deformation parameters γ̂i, when the axion field χ is a constant and is set to zero. With

respect to the dilaton φ0 of the undeformed background, the dilaton φ of the solution is

e2φ = e2φ0G (2.5)

and we have the usual AdS/CFT relation R4 = 4πeφ0N = λ, relating the radius of the

background and the ’t Hooft coupling constant. Note that the dilaton field φ is not simply

a constant, but it depends on the coordinates of the deformed sphere S̃5.

There is a non-zero NS-NS two form

B = R2G
(

γ̂3ρ
2
1ρ

2
2dϕ1 ∧ dϕ2 + γ̂1ρ

2
2ρ

2
3dϕ2 ∧ dϕ3 + γ̂2ρ

2
3ρ

2
1dϕ3 ∧ dϕ1

)

, (2.6)

while the R-R forms are

C2 = −4R2e−φ0ω1 ∧
3

∑

i=1

γ̂idϕi , dω1 =
r3

R4
sin θ cos θ dr ∧ dθ (2.7)

and

C4 = e−φ0
l4

R
sin2 α1 sin α2dt ∧ dα1 ∧ dα2 ∧ dα3 +

+4R4e−φ0Gω1 ∧ dϕ1 ∧ dϕ2 ∧ dϕ3 (2.8)

The five form field strength of the background is

F5 = dC4 − C2 ∧ dB ∗ F5 = F5 (2.9)

When all the three deformation parameters are equal, γ̂i = γ̂, we recover the Lunin-

Maldacena supersymmetric background [3].

3. A rotating point particle probe

As a warm up for what follows, we focus on the motion of a massless point-like particle in

the deformed AdS5 × S̃5 background which rotates on the S̃5 and minimizes its energy in

this internal space. For convenience we start from the action for a massive particle in ten

dimensions and later take the mass M to zero,

S = −M

∫

dt
√

−(g − b) (3.1)

where g and b are, respectively, the pull-backs of the space-time metric and of the NS-NS

two form onto the particle’s worldline and are given by

g = GMNẊMẊN b = BMNẊMẊN (3.2)
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Here XM are coordinates on the ten-dimensional space-time with X0 = t and ẊM denotes

the derivative of XM with respect to t. The metric GMN and the NS-NS two form BMN can

be read in (2.1) and in (2.6), respectively. The rotating point particle we want to analyze

sits at the center of AdS5 and spins in the ϕ1 direction. For this configuration we have

g = Gtt + Gϕ1ϕ1 ϕ̇2
1, b = 0 and the action becomes

S = −M

∫

dt
√

1 − R2Gρ2
1(1 + γ̂2

1ρ2
2ρ

2
3)ϕ̇

2
1 (3.3)

From now on, to save space we introduce the positive quantity Q2 = R2Gρ2
1(1 + γ̂2

1ρ2
2ρ

2
3).

Since the action we have written down presents no explicit dependence on the cyclic coor-

dinate ϕ1, we can replace ϕ̇1 with its conjugate momentum

J =
∂L

∂ϕ̇1
=

Q2Mϕ̇1
√

1 − Q2ϕ̇2
1

(3.4)

which is conserved in time. So we can define the Hamiltonian in the standard way

H = ϕ̇1J − L =
J

Q
(3.5)

where we have already taken the limit M → 0. We need to find the minimum of the

Hamiltonian and it is easy to convince that this occurs when Q is maximum, namely when

r = 0 and so Q = R. Substituting this value in equation (3.5) we obtain the energy of the

rotating point particle

E =
J

R
(3.6)

Finally, we find a geodesic which represents a BPS state2 with energy E equal to the angular

momentum J (in units of 1/R) and does not depend on the deformation parameters, i.e.

is the same as in the undeformed theory. This is one of the cases already analyzed in [20]

(see also [6]).

4. The equilibrium configurations

Our main purpose is to probe the deformed and non-supersymmetric background with

giant gravitons. We want to understand if it is possible to find minimum energy configura-

tions, study their stability and eventually their dependence on the deformation parameters.

Recall that in the standard AdS5 × S5 background there are three different configurations

characterized by the same quantum numbers. The first one is a point-like graviton spinning

around an S1 direction contained in S5, then there is a giant graviton corresponding to a

D3-brane wrapping an S3 ⊂ S5 and the third one is the so called dual giant graviton with

the topology of an S3 ⊂ AdS5. What about the deformed case?

In general, the dynamics of a D3-brane in a given background is described by the

action

S = SDBI + SWZ (4.1)

2In all our discussions we use the term BPS in its original sense. We do not refer to supersymmetry.
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where the Dirac-Born-Infeld term is

SDBI = −T3

∫

Σ4

dτd3σ e−φ
√

−det(gab + Fab) (4.2)

With gab = GMN∂aX
M∂bX

N we mean the pull-back of the ten-dimensional space-time

metric GMN on the worldvolume Σ4 of the brane. T3 is the D3-brane tension.3 The gauge

potential Aa enters the action through a U(1) worldvolume gauge field strength Fab in the

modified field strength Fab = 2πFab − bab, where bab is the pull-back to the worldvolume of

the target NS-NS two-form potential, bab = BMN∂aX
M∂bX

N . D-branes are charged under

R-R potentials and this feature determines that their action should contain a term (the

Wess-Zumino term) coupling the brane to these fields,

SWZ = T3

∫

Σ4

P

[

∑

q

Cq e−B

]

e2πF (4.3)

where P [. . .] denotes again the pull-back and the wedge-product is implicit.

Our analysis focuses on purely scalar solutions, so we drop all the fermions and the

gauge potential Aa on the brane, as done in the undeformed case.

4.1 Branes expanding in the deformed S̃5 space-time: giant gravitons

The first solutions we want to study are D3-branes wrapped on the deformed sphere part

of the geometry, moving entirely in the S̃5 and sitting at the center of AdS5. The time

coordinate in AdS5 is denoted by t. In what follows it is convenient to choose a static

gauge such that the worldvolume coordinates of the brane (τ, σi) are identified with the

appropriate space-time coordinates. In particular the brane wraps the (θ, ϕ2, ϕ3) directions,

τ = t , σ1 = θ ∈
[

0,
π

2

]

, σ2 = ϕ2 ∈ [0, 2π] , σ3 = ϕ3 ∈ [0, 2π] (4.4)

The D3-brane action (4.1) can be rewritten as

S = −T3

∫

Σ4

dtdθdϕ2dϕ3 e−φ
√

−det(gab − bab) + T3

∫

Σ4

P [C4 − C2 ∧ B] (4.5)

Our giant graviton has constant radius (r0), it orbits the S̃5 in the ϕ1 direction with a

constant angular velocity (ω0) and all the worldvolume modes are frozen. While it is not

a priori obvious that this is a consistent way of embedding the brane, we will see that it

gives in fact a minimal energy configuration. So we propose an ansatz of the form

r = r0 ϕ1 = ω0t l = α1 = α2 = α3 = 0 (4.6)

which, after integration on the spatial coordinates of the worldvolume, leads to the effective

Lagrangian

L = −h

√

1 − a2ϕ̇1
2 + mϕ̇1 (4.7)

3In our conventions T3 = 1
(2π)3

, see [21] for example.
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with

h = N
r3
0

R4
, a2 = R2 − r2

0 , m = N
r4
0

R4
(4.8)

We have the constraint r0 ≤ R because the size of the brane cannot exceed the radius of

S̃5 and so a2 ≥ 0. We have also used A3 T3 e−φ0 = N
R4 , where A3 is the area of a unit

3-sphere. Note that the effective Lagrangian is exactly the same found in the undeformed

case [9 – 11] and this appears to be strange at first sight because the giant has blown up in

the deformed S̃5. We will comment later on this particular behavior which is in contrast

with the results obtained in [18].

The conjugate momentum to ϕ1 is

J =
∂L

∂ϕ̇1
=

ha2ϕ̇1
√

1 − a2ϕ̇1
2

+ m (4.9)

This relation can be easily inverted to obtain

ϕ̇1 =
J − m

a2

√

h2 + (J−m)2

a2

(4.10)

The corresponding Hamiltonian of the giant graviton becomes

H = ϕ̇1J − L =

√

h2 +
(J − m)2

a2
(4.11)

and it is independent of ϕ1, so that the equations of motion can be solved with constant

momentum. For fixed J , we have two extrema of (4.11) now regarded as the potential that

determines the equilibrium radius. In particular, there are two degenerate minima at r0 = 0

and at r0 = R
√

J
N

, where the energy is E = J
R

, as for the point graviton, and ω0 = ϕ̇1 = 1
R

.

This analysis obviously gives the same results already found in the undeformed case and

the stringy exclusion principle manifests itself in the relation between the radius of the

giant and its angular momentum.

4.2 Branes expanding in AdS5 space-time: dual giant gravitons

In the previous section we have seen that there is a D3-brane configuration with the same

quantum numbers as the point-like graviton, even in the deformed AdS5 × S̃5 background.

Now we also consider the possibility of dual giant graviton solutions where the D3-branes

are wrapped in the 3-sphere (α1, α2, α3) contained in the AdS5 part of the geometry. In

contradistinction to the previous case we expect a priori the effective Lagrangian not to

depend on the deformation parameters because they do not enter the AdS space-time [18,

19]. Again the dynamics is described by the action (4.1) and we use the static gauge for

the worldvolume coordinates of the brane (τ, σi),

τ = t , σ1 = α1 ∈ [0, π] , σ2 = α2 ∈ [0, π] , σ3 = α3 ∈ [0, 2π] (4.12)

The giant graviton has constant radius (l0) and again orbits rigidly in the ϕ1 direction on

the S̃5. Our ansatz is

l = l0 ϕ1 = ω0t r = ϕ2 = ϕ3 = 0 θ =
π

4
(4.13)
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We will see that with the parametrization of the deformed 5-sphere as in (2.3), the choice

θ = π/4 is the most natural one in the study of fluctuations around the giant. The

dependence on the deformation parameters of the vibrations turns out to depend on the

position of the giant into the internal space. This ansatz yields the effective Lagrangian

L = −h̃

√

b̃2 − R2ϕ̇1
2 + m̃ (4.14)

with

h̃ = N
l30
R4

, b̃2 = 1 +
l20
R2

, m̃ = N
l40
R5

(4.15)

as in the undeformed case [10, 11]. Again we have used A3 T3 e−φ0 = N
R4 . The conjugate

momentum to ϕ1 now becomes

J =
∂L

∂ϕ̇1
=

h̃R2ϕ̇1
√

b̃2 − R2ϕ̇1
2

(4.16)

and from this relation we obtain

ϕ̇1 =
Jb̃

R2
√

h̃2 + J2

R2

(4.17)

We can calculate the corresponding Hamiltonian of the dual giant graviton and obtain

H = ϕ̇1J − L = b̃

√

h̃2 +
J2

R2
− m̃ (4.18)

Again H, as a function of l0, has two minima located at l0 = 0 and l0 = R
√

J
N

. The

energy at each minima is E = J
R

and ω0 = ϕ̇1 = 1
R

, matching the results of the previous

sections. Of course now there is no upper bound on the angular momentum J because AdS

space-time is non-compact and the radius l0 of the giant can be greater than R [10, 11].

So far we have seen that even for the deformed background AdS5 × S̃5, there are

three potential configurations to describe a graviton carrying angular momentum J : The

point-like graviton, the giant graviton of section 4.1 consisting of a 3-brane expanded into

the deformed 5-sphere, and a dual giant graviton consisting of a spherical 3-brane which

expands into the AdS space. This is exactly the same situation known from the standard

undeformed AdS5 ×S5 background. Moreover, if we consider the collective motion of both

brane configurations, we see that their center of mass travels along a null trajectory in the

ten-dimensional space-time once evaluated in ϕ̇1 = 1/R. We stress that this is the expected

result for a massless point-like graviton, but it is also true for the expanded (dual) giant

gravitons. So we have really found that giant graviton states which are degenerated with

massless particle states exist classically even in a background which in general preserves

no supersymmetries. This result is not so strange because it is a feature of a large class

of non-supersymmetric backgrounds [22] and of particular configurations in theories with

non zero NS-NS B field [23].
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5. Stability analysis and vibration modes

One of the main issues related to giant gravitons is their stability under the perturbation

around the equilibrium configurations. In the last two sections we found expanded branes

with the same energy of a point graviton and so they should be stable. In order to verify

this expectation we will consider the spectrum of small fluctuations around the giants, as

first studied in [24]. A vibration of the brane can be described by expanding our previous

ansatz as follows

X = X0 + εδX(t, σi) (5.1)

where X is a generic space-time coordinate, X0 denotes the solution of the unperturbed

equilibrium configuration, the fluctuation δX(t, σi) is a function of the worldvolume coor-

dinates (t, σi) and ε is a small perturbation parameter. We work in a Lagrangian setup [24]

and we expand the action of the probe brane in powers of ε as

S =

∫

dtd3σ{L0 + εL1 + ε2L2 + · · ·} (5.2)

Obviously L0 gives a zeroth order Lagrangian density related to that we have found in

the previous sections. To state that those solutions really minimize the action we have to

focus on the L1 term. The second order term L2 is useful to study the stability of the

configurations we have found and the bosonic fluctuation spectrum, which we expect to

depend on the deformation parameters, as in the analysis of vibrations around other BPS

states of this background [20]. Perturbative instability will manifest in the spectrum as

a tachyonic mode. We closely follow [24]. A slightly different method has been proposed

in [25].

5.1 Giant graviton fluctuations

To study the fluctuations around the configurations found in section 4.1 it is useful to

rewrite the AdS5 part of the metric as suggested in [24]

ds2
AdS5

= −
(

1 +

4
∑

k=1

v2
k

)

dt2 + R2

(

δij +
vivj

1 +
∑4

k=1 v2
k

)

dvidvj (5.3)

Then we change our previous ansatz as

r = r0 + ε δr(t, σi) ϕ1 = ω0t + ε δϕ1(t, σi) vk = ε δvk(t, σi) (5.4)

with σi = (θ, ϕ2, ϕ3). Expanding the action to the linear order we get

L1 = −T3 e−φ0 sin θ cos θr2
0

{[

4r2
0ω

2
0 + 3(1 − R2ω2

0)
√

1 − (R2 − r2
0)ω

2
0

− 4r0ω0

]

δr+

−
[

(R2 − r2
0)r0ω0

√

1 − (R2 − r2
0)ω

2
0

+ r2
0

]

∂δϕ1

∂t

}

(5.5)

The first order Lagrangian density (5.5) does not contain the deformation parameters and

is exactly the same found in the undeformed analysis [24]. The term in front of ∂δϕ1

∂t
is a

– 9 –
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constant and so it brings no contribution to the variation of the action with fixed boundary

values. The coefficient of the term δr vanishes if we take

ω0 =
1

R
(5.6)

This confirms that the giant graviton described in the previous section (the zeroth order

solution) is the right solution which really minimizes the action. Now we consider the

second order term in ε. With the choice (5.6) we get

L2 = T3 e−φ0 r2
0 sin θ cos θ

{[

− R3

2(R2 − r2
0)

∂2δr

∂t2
+

R

2(R2 − r2
0)

∆S3 δr +

+
1

2R

(

γ̂2
3

∂2δr

∂ϕ2
2

+ γ̂2
2

∂2δr

∂ϕ2
3

− 2γ̂2γ̂3
∂2δr

∂ϕ2∂ϕ3

)

]

δr +

[

− R3(R2 − r2
0)

2r2
0

∂2δϕ1

∂t2
+

R(R2 − r2
0)

2r2
0

∆S3 δϕ1

]

δϕ1 +

+
2R2

r0

∂δϕ1

∂t
δr +

[

− R3

2

∂2δvk

∂t2
+

R

2
∆S3 δvk − R

2
δvk

+
R2 − r2

0

2R

(

γ̂2
3

∂2δvk

∂ϕ2
2

+ γ̂2
2

∂2δvk

∂ϕ2
3

− 2γ̂2γ̂3
∂2δvk

∂ϕ2∂ϕ3

)

]

δvk

}

(5.7)

where the sum over k is understood and ∆S3 is the Laplacian on the unit 3-sphere. In

writing L2 some terms are integrated by parts; there are no surface contributions because

the worldvolume of the brane is a closed surface and the variations are assumed to vanish

at t = ±∞.

Because of the U(1) × U(1) worldvolume symmetry, corresponding to translations of

ϕ2 and ϕ3, it is convenient to introduce spherical harmonics Ym2,m3
s (θ, ϕ2, ϕ3) with definite

U(1) × U(1) quantum numbers (m2,m3) [18, 19]. In particular we have

∆S3 Ym2,m3
s (θ, ϕ2, ϕ3) = −Q2

sYm2,m3
s (θ, ϕ2, ϕ3)

∂

∂ϕ2,3
Ym2,m3

s (θ, ϕ2, ϕ3) = im2,3Ym2,m3
s (θ, ϕ2, ϕ3) (5.8)

For spherical harmonics on S3, Q2
s = s(s + 2). We expand the perturbations as

δr(t, θ, ϕ2, ϕ3) = Ar e−iωt Ym2,m3
s (θ, ϕ2, ϕ3)

δϕ1(t, θ, ϕ2, ϕ3) = Aϕ1 e−iωt Ym2,m3
s (θ, ϕ2, ϕ3) (5.9)

δvk(t, θ, ϕ2, ϕ3) = Avk
e−iωt Ym2,m3

s (θ, ϕ2, ϕ3)

The form of L2 tells us that the δvk perturbations decouple from δr, δϕ1 and have frequen-

cies given by

ω2
k =

1

R2

(

1 + Q2
s + Γ̂2

)

(5.10)
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where we have defined the positive quantity

Γ̂2 =

(

1 − r2
0

R2

)

(γ̂3m2 − γ̂2m3)
2 (5.11)

which contains the whole dependence on the deformation parameters and on the radius r0 =

R
√

J/N of the giant. The fluctuations δr, δϕ1 are coupled and the resulting frequencies

are obtained solving the following matrix equation




R
R2−r2

0

(

ω2R2 − Q2
s − Γ̂2

)

−2iω R2

r0

2iω R2

r0

R(R2−r2
0)

r2
0

(

ω2R2 − Q2
s

)





[

Ar

Aϕ1

]

= 0 (5.12)

The determinant brings us to a quadratic equation for ω2 from which we obtain

ω2
± =

1

R2



2 + Q2
s +

Γ̂2

2
± 2

√

√

√

√1 + Q2
s +

Γ̂2

2

(

1 +
Γ̂2

8

)



 . (5.13)

The condition for a giant graviton to be stable over the perturbations is that all the

frequencies are real, i.e. ω2 ≥ 0. The existence of imaginary part in ω means that the

e−iωt term can grow exponentially, which gives instability to the configuration, a tachyonic

mode. We have the constraint r0 ≤ R and so it is easy to conclude that there are not

unstable modes in the system at this quadratic order, as all the ω2 we found are real and

nonnegative. Note that because of the deformation parameters these frequencies depend

on the radius r0 of the giant (5.11). In the undeformed background all of the frequencies

are independent of r0 [24] and this is the main difference with respect to the deformed

theory.

5.2 Dual giant graviton fluctuations

Now we want to study the fluctuations around the configurations found in section 4.2. The

AdS space-time is now better described by the global coordinate metric (2.2). Hence the

ansatz becomes

l = l0 + ε δl(t, σi) ϕ1 = ω0t + ε δϕ1(t, σi) (5.14)

and

r = ε δr(t, σi) θ =
π

4
+ ε δθ(t, σi) ϕ2 = ε δϕ2(t, σi) ϕ3 = ε δϕ3(t, σi) (5.15)

with σi = (α1, α2, α3). Expanding the action to the linear order we get the same contribu-

tion as in the undeformed background [24]

L1 = −T3

R
e−φ0 sin2 α1 sin α2

l20

{[

4l20 + 3R2(1 − R2ω2
0)

√

l20 + R2(1 − R2ω2
0)

− 4l0

]

δl+

− l0ω0R
4

√

l20 + R2(1 − R2ω2
0)

∂δϕ1

∂t

}
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Again, the coefficient of the term ∂δϕ1

∂t
is a constant and so it brings no contribution to the

variation of the action with fixed boundary values. The coefficient of the term δl vanishes

if we take

ω0 =
1

R
(5.16)

This fact confirms that the giant graviton written in the previous section is a solution to

the equation of motion following from the D3-brane action. With this choice the term

linear in ε vanishes, while the second order term is

L2 = T3 e−φ0 l20 sin2 α1 sin α2
{[

− R3

2(l20 + R2)

∂2δl

∂t2
+

R

2(l20 + R2)
∆S3 δl

]

δl +

[

− R3(l20 + R2)

2l20

∂2δϕ1

∂t2
+

R(l20 + R2)

2l20
∆S3 δϕ1

]

δϕ1 +

+
2R2

l0

∂δϕ1

∂t
δl +

[

− R

2

∂2δr

∂t2
+

1

2R
∆S3 δr − 1

2R

(

1 +
b̃2

2
(γ̂2

2 + γ̂2
3)

)

δr

]

δr

}

. (5.17)

Of course ∆S3 is the Laplacian on a 3-sphere and b̃2 = 1+
l20
R2 , as in (4.15). Let Ỹs(α1, α2, α3)

be spherical harmonics so that the usual relation holds

∆S3 Ỹs(α1, α2, α3) = −Q2
sỸs(α1, α2, α3). (5.18)

We expand the perturbations as

δl(t, α1, α2, α3) = Ãl e
−iω̃t Ỹs(α1, α2, α3)

δϕ1(t, α1, α2, α3) = Ãϕ1 e−iω̃t Ỹs(α1, α2, α3) (5.19)

δr(t, α1, α2, α3) = Ãr e−iω̃t Ỹs(α1, α2, α3)

The δr perturbation decouples from δl, δϕ1 and it has a frequency given by

ω̃2
r =

1

R2

[

1 + Q2
s +

b̃2

2
(γ̂2

2 + γ̂2
3)

]

(5.20)

The δl, δϕ1 fluctuations are coupled and the resulting normal frequencies are obtained

solving




R
l20+R2

(

ω̃2R2 − Q2
s

)

−2iω R2

l0

2iω R2

l0

R(l20+R2)

l20

(

ω̃2R2 − Q2
s

)





[

Ãl

Ãϕ1

]

= 0 (5.21)

which yields

ω̃2
± =

1

R2

(

2 + Q2
s ± 2

√

1 + Q2
s

)

(5.22)

Again there are not unstable modes in the system at this quadratic order, as all the

frequencies are real. The deformation parameters γ̂2,3 enter the frequency ω̃2
r which brings

a dependence on the radius l0 = R
√

J/N . The frequencies ω̃2
± are the same as in the

undeformed case and do not depend on l0 [24].
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5.3 Summary of the excitation spectrum and role of deformation

In this section we discuss how the deformation enters the vibration modes. First of all, we

stress that turning off γ̂i manifestly reduces all the frequencies to those of the undeformed

case. This is a good test of our results.

• When the giant graviton expands into the deformed sphere, it has six transverse

scalar fluctuations, of which four correspond to fluctuations into AdS5 (ω2
k) and two

are fluctuations within S̃5 (ω2
±). In particular from (5.10) and (5.13)

δvk → ω2
k =

1

R2

(

1 + Q2
s + Γ̂2

)

(δr, δϕ1) → ω2
± =

1

R2



2 + Q2
s +

Γ̂2

2
± 2

√

√

√

√1 + Q2
s +

Γ̂2

2

(

1 +
Γ̂2

8

)



 (5.23)

All the vibrations involve the deformation parameters γ̂2,3 (5.11) because the per-

turbations δX(t, θ, ϕ2, ϕ3) are functions of the worldvolume coordinates of the brane

and in particular they depend on ϕ2 , ϕ3. So, once we perturb the giant around the

equilibrium configuration in X0 the fluctuations feel the effect of the deformed back-

ground. Note that a similar γ̂2,3 dependence appears also in [20] in the calculation

of quadratic fluctuations near a (J, 0, 0) geodesic. The frequencies just discussed are

very similar to the ones obtained in [19]; the main difference is our dependence on

the radius of the giant.

• Similarly, the vibration mode frequencies corresponding to the giant graviton ex-

panded in the AdS part, are (5.20) and (5.22)

δr → ω̃2
r =

1

R2

[

1 + Q2
s +

b̃2

2
(γ̂2

2 + γ̂2
3)

]

(δl, δϕ1) → ω̃2
± =

1

R2

(

2 + Q2
s ± 2

√

1 + Q2
s

)

(5.24)

An accurate analysis of the quadratic expansion tells us that Gϕ1ϕ1 brings the whole

dependence on the deformation, once one is calculating the pull-back. In section 4.2,

we have mentioned that the choice of the parametrization of the ρi in (2.3) is impor-

tant in the study of the dual giant vibrations. Physically, their dependence on the

deformation is expected due to the location of the giant into the deformed sphere.

The coordinates ρi are functions of the angle θ and we are now expanding around

π/4. So, up to ε2 we obtain Gϕ1ϕ1 ∼ R2 − ε2(2 + γ̂2
2 + γ̂2

3)δr2/2 and the γ̂2,3 de-

pendence manifests itself only when we study perturbations in S̃5, as for ω̃2
r . The

original ansatz θ = π/4 does not select a particular deformation parameter. The

frequency ω̃2
r is symmetric in the exchange γ̂2 ↔ γ̂3 and depends on the radius l0 of

the dual giant. On the other hand, we expect independence from the deformation

when studying perturbations in AdS directions.
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From (5.23) and (5.24) we see that ω2
− = 0 and ω̃2

− = 0 are solutions when Q2
s = 0. These

zero modes correspond to the fact that we have no constraints on r0 and l0, namely they

can be taken to have any value allowed by the geometry.

6. Undeformed giants in a deformed background

At a classical level we have found that the effective Lagrangian and hence the energy of a

giant in the γ̂i-deformed background are independent of the deformation parameters. This

is an expected result for the dual giant (brane expanded in the AdS part of the geometry),

but seems quite strange if the brane expands into the deformed 5-sphere. Analytically, this

is due to the particular form of the D3-brane action. The kinetic part (4.2) is independent

of the deformation because of the presence of the modified dilaton (the same behavior

found in [18]). The Wess-Zumino part of the action is

SWZ = T3

∫

Σ4

P [C4 − C2 ∧ B] (6.1)

It is important to note that, even before taking the pull-back on the worldvolume of the

brane, the combination

C4 − C2 ∧ B = e−φ0
l4

R
sin2 α1 sin α2dt ∧ dα1 ∧ dα2 ∧ dα3 +

+4R4e−φ0 ω1 ∧ dϕ1 ∧ dϕ2 ∧ dϕ3 (6.2)

is exactly the same as the R-R 4-form in the undeformed AdS5 ×S5 space-time (recovered

after setting the deformation parameters γ̂i to zero). So, the independence of the defor-

mation seems to be a feature of the Wess-Zumino term for a D3-brane configuration with

vanishing worldvolume gauge field strength F in this particular background.4

Can we speculate more on our γ̂i-independent results? Remember that we have pointed

out that the existence of degenerate point-like and giant graviton states is not a new

feature even in non-supersymmetric backgrounds [22] and in theories characterized by

B 6= 0 [23]. Moreover, our giant graviton solutions are classically BPS states in the

deformed model, i.e. states that have the minimal energy for the given charge. The authors

of [20] discuss geodesics on γ̂i-deformed S̃5 labeled by three conserved angular momenta

(J1, J2, J3). These geodesics depend in general on the deformation parameters. In the

standard AdS5 × S5 background all geodesics represent BPS states with energy E equal

to the total angular momentum J = J1 + J2 + J3, while in the deformed case only few of

them are characterized by this property. In particular, in the γ̂i-deformed model special

solutions with energies that do not depend on the deformation parameters exist, i.e. they

are the same as in the undeformed theory. This is the case for states labeled by (J, 0, 0). We

want to stress that our giant gravitons are (J, 0, 0) BPS states and follow a geodesics of S̃5,

so that their classical independence on the deformation parameters is not a new feature.

Moreover, studying giant gravitons on a deformed (J, 0, 0) PP-wave, the authors of [19]

4The authors of [18] get a dependence on the deformation parameters but their conventions do not

coincide with ours and with those of [26, 3, 4].
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also found a classical configuration independent of the deformation and with a spectrum of

small fluctuations almost identical to the one obtained in section 5.1. This similar behavior

could be an interesting point to study in detail.

The background we have studied breaks all the supersymmetries of AdS5 × S5 and so

it should be dual to a non-supersymmetric but marginal deformation of the N = 4 SU(N)

SYM [4]. More precisely, the gauge theory is conformal in the large N limit [20, 27, 28],

which we assume from now on. The bosonic part of the deformed YM has the following

form5

W = Tr

(

−1

2
[Φi , Φj]Cij

[

Φ̄i , Φ̄j
]

Cij
+

1

4

[

Φi , Φ̄i
] [

Φj , Φ̄j
]

)

(6.3)

where Φi are the three holomorphic scalars of N = 4 SYM. The deformation manifests

itself in the modified commutators

[Φi , Φj]Cij
≡ eiCij Φi Φj − e−iCij Φj Φi , i, j = 1, 2, 3 (6.4)

and similarly for the conjugate fields Φ̄i. The matrix C reads [29]

C = π







0 −γ3 γ2

γ3 0 −γ1

−γ2 γ1 0






(6.5)

The real deformation parameters γ̂i appearing in (2.3) are related to the γi deformations

on the gauge theory side (6.5) via the simple rescaling γ̂i = R2γi. The potential can be also

obtained from the undeformed one by replacing the usual product ΦiΦj by the associative

?-product of [3, 20].

The fact that the energy is independent of the deformation parameters is general and

persists both in the case of unequal γ̂i and in the N = 1 supersymmetric γ̂i = γ̂ theory. In

order to simplify our analysis of the dual CFT picture of the giant gravitons, we restrict

to the more studied N = 1 case where we are protected by supersymmetry. We have

not checked that in the supersymmetric case our giant gravitons preserve some of the

supersymmetries but the fact that they saturate a BPS bound is an indication of this

feature. It would be interesting to prove this expectation. From now on we set γi = γ.

Via AdS/CFT , states in supergravity are expected to map onto states of Yang-Mills

theory on R × S3 and the energy in space-time maps to energy in the field theory. Using

the state-operator correspondence, the energy of states on R × S3 maps to the dimension

∆ = RE of operators on R
4. In the undeformed case, the operators corresponding to

(dual) giant gravitons have been first introduced in [12, 13]. Our giant graviton solutions

correspond to the case where we have only one non-vanishing angular momentum (a (J, 0, 0)

BPS state in the language of [20]) and we should construct the dual operators on the

CFT side with only one holomorphic scalar field. Let Z ≡ Φ1 = φ5 + iφ6 be a complex

combination of two of the six adjoint scalars in the YM theory, then in the undeformed

case giant gravitons are dual to states created by a family of subdeterminants [12]

OJ =
1

J !
εi1 i2···iJ a1 a2···aN−J

εl1 l2···lJ a1 a2···aN−J Zi1
l1

Zi2
l2
· · ·ZiJ

lJ
(6.6)

5We use the notations of [28].
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Moreover,

ÕJ =
1

J !

∑

σ∈SJ

Zi1
iσ(1)

Zi2
iσ(2)

· · ·ZiJ
iσ(J)

(6.7)

with SJ the permutation group of length J , is supposed to describe a dual giant graviton

in the undeformed theory [13]. Once the deformation is turned on we are instructed to

use the ?-product among the fields, so introducing a set of relative phases [30]. However,

the field content of the operators (6.6) and (6.7) implies a vanishing phase factor, and

so we guess that the same operators could describe giant graviton states even in the γ-

deformed theory [19]. All these operators form a good basis in the large J ∼ N limit and

have classical scaling dimension ∆ = J , matching the results of sections 4.1 and 4.2. This

is an agreement between a strong and a weak coupling limits and so the operators (6.6)

and (6.7) seem to be protected even in this less-supersymmetric case. Remember that

single trace operators of the form (J, 0, 0) are BPS states of the γ-deformed gauge theory

which have zero anomalous dimension [3, 31] but we expect this property to hold also

for the more complicated operators (6.6) and (6.7) because they can always be written as

(Schur) polynomials in Z [13, 32].6

6.1 Comments on the dual gauge theory picture of giant gravitons

We have seen that the deformation seems to manifest itself in the vibration modes around

the stable configurations. It would be very interesting to find the CFT dual of these

scalar fluctuations, as in [33, 34]. In general, most fluctuations of giant gravitons are

not BPS and so from the field theory side we expect anomalous dimensions to develop

quantum mechanically: The calculation would involve the full potential (6.3) and of course

the deformation parameters. From the brane side we read ∆ = REω, where Eω is the

excited energy of the giant graviton, i.e. if we switch to the quantum-mechanical system

Eω ∼ E + ω (with ~ = 1), and ω is a general fluctuation frequency. To be more explicit7

let us focus on the spectrum of small AdS fluctuations when the giant graviton expands

into the deformed 5-sphere S̃5. The frequencies of the four modes are given by (5.23)

ωk =

√

(s + 1)2 + Γ̂2

R
(6.8)

with Q2
s = s(s + 2). The radius r0 of the spherical D3-brane enters in the definition of

Γ̂2 (5.11) and the energy now reads

Eωk
=

J

R
+

√

(s + 1)2 + λΓ2

R
(6.9)

We have used R4 = 4πeφ0N = g2
YMN = λ and γ̂ = R2γ, so that from (5.11) and r2

0 =

JR2/N , the relation

Γ̂2 = λΓ2 = λ

(

1 − J

N

)

γ2(m2 − m3)
2 (6.10)

6The authors of [20] have shown that also in the non-supersymmetric case of three unequal γi, operators

of the class (J, 0, 0) are protected in the limit of large N . It is possible that the operators (6.6) and (6.7)

could represent giant graviton states even in the non-supersymmetric case.
7The following analysis can be extended in the same way to the other giant fluctuations.
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naturally follows. Note that for a maximal giant graviton J = N , Γ2 = 0 and we recover

the frequency obtained in the standard AdS5 × S5 case [24]. If we want to find the dual

description of these fluctuations, we can introduce suitable impurities in (6.6) as first

proposed in [33] (the ?-product is implicit)

Os
k ∼ εi1 i2···iJ a1 a2···aN−J

εl1 l2···lJ a1 a2···aN−J Zi1
l1

Zi2
l2
· · ·ZiJ−1

lJ−1
(W s

k )iJlJ (6.11)

Here W s
k is a word built out of the sth symmetric traceless product of the other four scalars

φi of the YM theory (i = 1, · · · , 4) to match the scalar spherical harmonics of S3 on the

brane side. In order to consider fluctuations along the AdS directions we have to include

a covariant derivative Dk in the word, so the index k = 1 · · · 4 refers to the four Cartesian

directions of R
4 in radial quantization of R×S3. We stress that the deformation parameters

introduce a dependence on the ’t Hooft coupling λ and, if the AdS/CFT correspondence

holds, the energy Eωk
gives the scaling dimension of Os

k in the limit of large ’t Hooft

coupling

∆ = J +
√

(s + 1)2 + λΓ2 (6.12)

We do not exclude the possibility that the interactions of the Yang-Mills theory do produce

a perturbative (weak coupling constant λ ¿ 1) anomalous dimension for the operators just

introduced, related to that predicted by the other side of the correspondence. This is

a heuristic discussion, since the precise form of a general operator of the type (6.11) is

still unknown. Moreover, we are now talking about non-protected quantities and a direct

comparison is a very difficult task because we are facing a strong/weak coupling duality.

If we want to match the results, it is simpler to study the correspondence in novel limits,

for example where quantum numbers become large with N [35].

6.2 Dual giants and semi-classical solutions of CFT

The fluctuations around dual giants can be similarly described using operators on the

field theory side (see the recent [36]). However, a more efficient approach is to identify

a classical field theory configuration which encodes the same properties of the spherical

brane in AdS [11] and then try to study fluctuations around this solution similarly to [34].

The idea is to work with the bosonic part of the dual CFT which lives on the boundary

of AdS5, namely on R × S3 with metric ds2 = hµνdxµdxν

S = − 1

g2
YM

∫

d4x
√
−h

[

Tr

(

∂µΦ̄i∂µΦi +
1

R2
Φ̄iΦ

i

)

+ W
]

(6.13)

where W is defined in (6.3) with γi = γ. Since the background is of the form R × S3, the

conformal invariance of the theory imposes a mass term for Φi and R is the radius of AdS5.

By rescaling the Φi fields

Φi(t,Ω) →
√

g2
YMN

4π2R2
Φi(t,Ω) (6.14)

the action can be rewritten as

S =
N

4π2R2

∫

d4x
√
−h

[

Tr

(

−∂µΦ̄i∂µΦi − 1

R2
Φ̄iΦ

i

)

+ Wλ

]

(6.15)
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The rescaled potential Wλ is

Wλ = Tr

(

λ

8π2R2
[Φi , Φj]Cij

[

Φ̄i , Φ̄j
]

Cij
− λ

16π2R2

[

Φi , Φ̄i
] [

Φj , Φ̄j
]

)

(6.16)

The matrix Cij is defined in (6.5) with now γi = γ. Next, we consider the ansatz

Φ1(t,Ω) = diag(η, 0, 0, · · · , 0)eiθ(t) with η = const. , Φ2,3(t,Ω) = 0 (6.17)

which is well defined in the large N limit of the SU(N) theory [11]. The Lagrangian turns

out to be

L =
NR

2

(

η2θ̇2 − η2

R2

)

(6.18)

We see that the angular momentum J = ∂L/∂θ̇ is conserved and the energy

E = Jθ̇ − L =
J2

2NRη2
+

Nη2

2R
(6.19)

is minimized at η2 = η2
0 = J/N where its value is E = J/R. So, we have found a classical

configuration in this truncated CFT which has the same properties of the spherical brane

in AdS5.

The transverse fluctuations of dual giants are represented in the gauge theory by modes

of the scalars φi for i = 1, · · · , 4 as explained in the previous section. The coordinates

(ρi, ϕi) which parametrize the deformed sphere S̃5 (2.3) correspond to the three complex

scalars Φi of Yang-Mills theory and in particular the dictionary tells us that Φi = ρie
iϕi .

On the supergravity side the modified ansatz (5.15) yields to ρ2,3 ∼ εδr/
√

2 and so if we

want to translate this vibrations in the dual CFT it seems natural to consider diagonal

fluctuations of the form

Φ2(t,Ω) = Φ3(t,Ω) = εdiag(
δρ(t,Ω)√

2
, 0, 0, · · · , 0) (6.20)

Moreover, we note that in this CFT analysis η covers the role of the radius of the giant,

while θ̇ is the angular velocity; in fact at the minimum of the energy its value is θ̇ = θ0 =

1/R as in (5.16). So we guess that the study of small fluctuations in radius and in the

orientation of angular momentum could be performed thanks to the modified ansatz

Φ1(t,Ω) = diag(η + ε δη(t,Ω), 0, 0, · · · , 0)ei(θ(t)+ε δθ(t,Ω)) (6.21)

Exactly as in section 5, we study the action up to second order in ε and we expand the

generic perturbation δx(t,Ω) in spherical harmonics

δx(t,Ω) = Axe−iω̃xtYs(Ω) (6.22)

The calculation runs parallel to that of section 5.2 so we are free to omit the details; we only

stress that the linear term in ε vanishes when evaluated in the classical vacuum and the

first commutator in (6.16) covers a crucial role in what follows. The δη, δθ perturbations

are coupled and the resulting frequencies are

ω̃2
± =

1

R2

(

2 + Q2
s ± 2

√

1 + Q2
s

)

(6.23)
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in perfect agreement with (5.22). The δρ perturbation decouples from δη, δθ and has a

frequency

ω̃2
ρ =

1

R2

(

1 + Q2
s +

λ

4π2
|q − q̄|2 J

N

)

(6.24)

where we have defined q = eiπγ . Note that the frequency (6.24) is very similar to the exact

anomalous dimension obtained in [37]. When the deformation parameter is set to zero

(q = q̄ = 1), we recover the frequencies obtained in the undeformed theory [34]. Because of

the λ-dependence of (6.24) we have to be careful in comparing it to the result of section 5.2.

Quantum mechanically, the energy (in units of 1/R and with ~ = 1) has the form

ECFT = J +

√

1 + Q2
s +

λ

4π2
|q − q̄|2 J

N
(6.25)

On the other hand, from the value of the small fluctuation frequency given in (5.20) and

with γ̂2
2 = γ̂2

3 = γ̂2 = λγ2, the energy of the brane is

EBRANE = J +

√

1 + Q2
s + λ

(

1 +
J

N

)

γ2 (6.26)

What happened? The two energies are remarkably similar but of course we have to check

the regime of validity of our analysis of the small vibrations, both in the gauge theory and

in the supergravity side. To be more precise, the energy EBRANE (6.26) is a well defined

quantity at large λ and in the small γ limit, with γ̂2 = λγ2 fixed [3]. The CFT energy (6.25)

was computed for small λ, where the semi-classical description of the Yang-Mills theory

becomes reliable, and at arbitrary q. So we expect a function to exist which smoothly

interpolates between the weak coupling result (6.25) and the strong coupling one (6.26).

Note that if we expand the |q − q̄|2 term into the square root of (6.25) for a particularly

small value of γ, we obtain

ECFT ∼ J +

√

1 + Q2
s + λγ2

J

N
(6.27)

On the other hand, if J/N À 1 we can safely ignore the 1 appearing in (6.26) and up to

their regime of validity, the two energies are identical. This is the same limit studied in [11]

following the work of [38], to show that for large values of J/N the leading term of the

Dirac-Born-Infeld and Wess-Zumino action of a brane in AdS5 exactly matches the CFT

action. We leave the complete understanding of these features for future works. Another

useful strategy could be the one used in [39].

Our CFT analysis applies equally well to the case of unequal γi and reproduces the

γ2,3 behavior obtained on the brane side. So, let us conclude noting that in particular

the authors of [20] and [28] have found non-trivial examples where implications of the

AdS/CFT duality are observed even in the non-supersymmetric case and where the non-

renormalization theorem seems not to be dictated by supersymmetry. We do not exclude

a possible extension of this AdS/CFT comparison to the more general case of unequal γi

deformation parameters.
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7. Conclusions

In this paper we have considered giant graviton configurations on the Type IIB supergravity

background which can be obtained by a non-supersymmetric but marginal three-parameter

deformation of the original AdS5 ×S5 solution. In particular, we have shown the existence

of giants which are energetically indistinguishable from the point graviton, even in absence

of supersymmetry. This feature holds for both the two sets of giant graviton solutions,

namely when the D3-brane expands into the deformed 5-sphere part of the geometry and

when it blows up into AdS5. The (dual) giant dynamics turns out to be independent of the

deformation parameters with a behavior which is exactly the same found in the undeformed

theory. The deformation of the background affects both the NS-NS and the R-R sectors.

The D3-brane couples to the two and four forms but with a precise mechanism which ex-

actly compensates the changes induced by the deformation. More striking, this complete

cancellation of the deformation parameters does not depend on their values and remains

valid in the presence of unequal γ̂i (the non-supersymmetric case) and in the special case

γ̂i = γ̂, corresponding to the supersymmetric Lunin-Maldacena deformation. In order to

understand the stability of the configurations we have found, we have also performed a

systematic study of the spectrum of small fluctuations around the giant graviton solutions.

This is where the deformation manifests itself providing the first important difference with

respect to the undeformed case. In fact, the deformed spectrum turns out to depend on

the radius of the (dual) giant which is always coupled to the deformation parameters. De-

spite this fact, the deformation enters into the spectrum as a positive contribution and the

frequencies do not allow tachyonic modes. The (dual) giant gravitons are perturbatively

stable and this characteristic works in favor of the perfect quantitative agreement between

the gauge theory and the string theory found in [18]. Finally, restricting to the super-

symmetric case of equal γ̂i, we have proposed qualitative and quantitative comparisons

obtained from the dual gauge theory picture, generalizing what is known in the original

undeformed correspondence. In the case of dual giant gravitons, a semi-classical CFT

picture seems to capture a lot of the physics of the brane configuration, giving the correct

energy, angular momentum and a remarkable similar spectrum of small fluctuations.

The study of giant graviton dynamics is certain a fascinating subject. One of their

most striking features is their ability to relate UV and IR regimes by enlarging their size

with the increasing of the energy. Another interesting feature of giant graviton solutions

is their stability even in a non-supersymmetric background. Further investigations of this

property could give new insight in the understanding of the role played by supersymmetry

in the gauge/gravity dualities.
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